Regulation of Expression for the RNP-4F Splicing Assembly Factor in the Fruit-Fly Drosophila melanogaster
نویسندگان
چکیده
Intron splicing in eukaryotic organisms requires the interactions of five snRNAs and numerous different proteins in the spliceosome. Although the molecular mechanism behind splicing has been well studied, relatively little is known about regulation of expression for these splicing factor proteins. One of these proteins is the evolutionarily-conserved Drosophila RNP-4F splicing assembly factor. This protein is transcribed from a single gene into two developmentally regulated mRNAs that differ in their 5’-UTR structure. In the longer isoform, known to be abundant in the developing fly central nervous system, a conserved retained intron which folds into a stem-loop has been implicated in expression control of the mRNA. Here, we describe construction and utilization of several new rnp-4f gene expression study vectors using a GFP reporter in the ΦC31 system. The results confirm our previous observation that presence of the regulatory stem-loop enhances RNP-4F protein expression. However, in that study, the enhancement factor protein was not identified. We show here that overexpression of the RNP-4F transgene compared to the control results in additional translation, as indicated by the GFP reporter in the fluorescent images. These results are interpreted to show that RNP-4F protein acts back on its own mRNA 5’-UTR regulatory region via a feedback pathway to enhance protein synthesis in the developing fly central nervous system. A model is proposed to explain the molecular mechanism behind rnp-4f gene expression control.
منابع مشابه
Concentration dependent effect of morphine, aspirin, capsaicin and chili pepper hydro alcoholic extract on thermal and chemical pain model in fruit fly (Drosophila melanogaster)
Introduction: Pain research using animal models is related to ethical concerns, so invertebrates and insects have been recommended by researchers. In the present study, the nociceptive and antinociceptive effects of capsaicin, aspirin, morphine and chili extract were examined using fruit fly (Drosophila melanogaster) as an alternative for rodent pain model. Methods: Stage 3 of larvae and ad...
متن کاملAconitase and Developmental EndPointsasEarly IndicatorsofCellularToxicity Induced by Xenobiotics in Drosophila Melanogaster
Background: In this study, the toxicity of the different xenobiotics was tested on the fruit fly Drosophila melanogaster model system. Methods: Fly larvae were raised on food supplemented with xenobioticsat different concentrations (sodium nitroprusside (0.1-1.5 mM), S-nitrosoglutathione (0.5-4 mM), and potassium ferrocyanide (1 mM)). Emergence of flies, food intake by larvae, and pupation h...
متن کاملA phylogenetic study of Drosophila splicing assembly chaperone RNP-4F associated U4-/U6-snRNA secondary structure
The rnp-4f gene in Drosophila melanogaster encodes nuclear protein RNP-4F. This encoded protein is represented by homologs in other eukaryotic species, where it has been shown to function as an intron splicing assembly factor. Here, RNP-4F is believed to initially bind to a recognition sequence on U6-snRNA, serving as a chaperone to facilitate its association with U4-snRNA by intermolecular hyd...
متن کاملOuija board: A transcription factor evolved for only one target in steroid hormone biosynthesis in the fruit fly Drosophila melanogaster
Transcription factors generally regulate gene expression of multiple targets. In contrast, our recent finding suggests that the zinc finger protein Ouija board controls steroid hormone biosynthesis through specific regulation of only one gene spookier in Drosophila. It sheds light on a specialized but essential factor that evolved for one target.
متن کاملSURVEY AND SUMMARY Regulated functional alternative splicing in Drosophila
Alternative splicing expands the coding capacity of metazoan genes, and it was largely genetic studies in the fruit-fly Drosophila melanogaster that established the principle that regulated alternative splicing results in tissueand stage-specific protein isoforms with different functions in development. Alternative splicing is particularly prominent in germ cells, muscle and the central nervous...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015